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Summary 

We present an efficient method for wavefield modeling in arhi- 
trarily inhomogeneous 3-D elastic media, based on optimized 
difference operators for spatial differentiation (Holberg, 1987). 
This technique offers accurate results on coarse spatial grids, ie. 
of the order of 3 gridpoints per shortest wavelength. In 3-D 
applications, this fast finite difference technique is at least two 
orders of magnitude more efficient than conventional finite dif- 
ference schemes and typically 2.5 to 6 times more efficient than 
the pseudospectral method, depending on the sampling of the 
model. This makes it practicable to run realistic 3-D simulations 
on existing vector computers. In t,he present paper we discuss 
the practical implementation of this method and give timings for 
various model sizes and computer configurations. We also give 

several numerical examples, ranging from simulat~ions in simple 
geometries with well known solutions to geometries of realistic 

complexity. 

Introduction 

Efficient, numerical simulation of elastic wave propagation in com- 
plex geological media is of considerable importance in exploration 
and production seismology. Modeling is often used to study am- 
plitude variations with offset in areas with strong lateral velocity 
gradients and to study diffractions from fault zones and con- 

verted shear waves from deep complex structures. Particularly, 
accurate 3-D elastic modeling capability is becoming increasingly 

important as we collect more 3-D data and search for smaller 

and more complex reservoirs. Also, proper numerical modeling 

will find applications in future modeling-driven seismic inversion 
schemes. All these factors pose stringent requirements on the 
modeling algorithm. 

Direct numerical techniques, like finit,e differenring, handle 
any kind of waves in arbitrarily inhomogeneous media. However, 
conventional finite difference schemes require a gross oversam- 
pling of the model to produce accurate results. For this reason 
finit,e difference techniques have not yet been applicable to mod- 
els of realistic size. This heavy oversampling of the model is now 
obsolet,e. By using properly designed difference operators for 
spatial differentiation (Holberg, 1987), one can obtain excellent 
results with order of 3 grid point per shortest wavelength when 
t,he differentiator half-length is 4 to 6 samples. In 3-D modeling, 
t,his capability reduces the requirements for computer time and 
storage by more than two orders of magnitude. 

In the present work we have used this powerful fast finite 
difference technique to realize efficient 3-D elastic modeling. We 
solve the elastodynamic equations for the stresses and use a stag- 
gered grid formulation similar to the one used by Virieux (1986). 
By calculating different field quantities on different sets of grid- 
points we avoid the use of inaccurate centered derivative oper- 
ators. By using a stress formulation, the free surface boundary 
conditions are easily modeled. Also, the resulting scheme is then 
st,able for all values of Poisson’s ratio and liquid-solid interfaces 
are handled accurately without the need to explicitly specify the 
boundary conditions at such interfaces (Levander, 1987). 
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Implementation 

We let i, j and b represent the direct.ions in a right handed 
coordinate system ( ie. a cyclic permutation of a’,~ and 2). 
The corresponding integer coordinates are I,J and Ii, hence 
ZA = (K - l)Azk. The equation for a diagonal stress compo- 

nent is then 

atzOi;(I,J,li,t)= [X(I,J,K)t 2/1(1,J,h')]a,~Ai(ltf,J,~,t) 

tX(I,J,K)[a~A,(I,Jtf,li,t)ta~Ak(l,J1li+~,t)] (1) 

and the equation for a shear stress component is 

a:Ui,(lt t,J,Iit~,t) =~L(I+~,J,h.tf) 

[~~A,(It~,J,K,r) t O,+A~(I,J,Ki-f,t)] (2) 

A component of the accelerat,ion, A,, is defined as 

A,(I,J+;,K,t) = /?(l,Jtf,K) 

[a,solj(l,J,~,t)ta~~ij(lt~,Jt~,h.,t) 

Here p is the density and X and /I are t,he two Lame paramet,ers. 
The forward (at) and backward (a- ) difference operators are 
defined in Holberg (1987). The source time function is g(t) and 
fj is the jth component of the spatial part of the source function. 

To be able to describe a directional source or a P-wave source 

we introduce a bandlimlted Dirac &function as 

qrj - ZJ) = k~lnn 3;1,e-‘:14 (4) 

and adjust the spatial bandwith, using Ir,, so that the source 
is approximately pointlike. This is easily obtained for a direc- 
tional source, since it can be represented as a force on a single 
mesh point. A pressure source, however, has a more complicated 
spatial dependence and behaves as a sum of dipole contributions 
and must be spread out over 6 or more meshpoints in 3-D pseu- 
dospectral or finite difference calculations. 

We use standard second order temporal dill’erencing of the 
stress fields. All calculations are performed on I - y planes of 
field-values. For each recursive time step the algorithm steps the 
T - y planes of computation down t.hrough the complete spatial 
data volume. To solve the puzzle of minimiziug the memory 
requirements while optimizing the numerical operations and not 
creating additional I/O, we store in memory the relevant fields 
and sums of spatial derivatives of the fields in slabs of thickness 
ranging from 2 up to 2L, + 1, where L, is the differentiator half- 
length in the z-direction. 

Numerical examples 

To demonstrate the accuracy of our method for a coarse grid, 
we compare our finite difference solution with the solution to 
Lamb’s problem for a P-wave source calculated with a reflectivity 
algorithm. The result is shown in Figure 1. The source and 
receiver locations together with densities, P-wave velocit,ies and 
S-wave velocities for the two media are given in Figure la. In 
Figure lb to lg the solid line is the linlte difference solution 
whereas the reflectivity solution is plotted with a dashed line. 
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2 Fast finite-difference modeling 

The events, in order of increasing time are the direct P-wave, the 
P-wave to P-wave reflection and t,he P-wave to S-wave reflection. 
This calculation is performed with 3.0 gridpoints per shortest 
wave1engt.h in space and we Jind excellent agreement between 
the two methods at all offsets. Preliminary results indicate that 
we must expect some amplitude deviations at large offsets if the 
number of gridpoints per shortest wavelength is reduced towards 
2.0. 

We have performed a full-scale simulation of 4 seconds of data 
for the model shown in Figure 2. This model is 3.3 km x 2.2 km 
x 2.8 km in the 2, y and z directions respectively. The source 
handwith is 30 Hz and the grid spacing is 17.5 meters. The ex- 
plosive source, marked with a star in Figure 2, is located in the 
water layer 8.75 meters below a free surface. In the underlying 
solid layers, the density and P-wave and S-wave velocities in- 
crease with depth from 1.87 g/cm3, 1995 m/3 and 1220 m/s in 
layer II to 2.48 g/cm 3, 3490 m/s and 2400 m/s in layer IX. The 
exceptions being a reduction in S-wave velocity in layer IV and 
low P-wave and S-wave velocities in layer VII compared to the 
neighbouring layers (ie. 2415 m/s and 1195 m/s). 

Our algorithm allows snapshots to be recorded in several cross 
sections normal to any of the three axis, E, y or t and at a nun,- 
ber of offsets and/or depths. For the snapshots, we display t,he 
pressure field P = -f(u., + uyll $ oz.) and we calculate the curl 
of the acceleration field to have a picture of the rotational mo- 
tion in the medium. The reason for using the acceleration as the 
basis for the shear-wave snapshots is that it is readily available 
from the calculations as a sum of derivatives of stress fields and 
requires little preparation before display. The price to pay for 
this is that the fields we display show several rapid oscillations. 
This is not due to any dispersion effects but to the fact that the 

components of curli are formally obtained by several temporal 

and spatial differentiations of the displacement field. 
For simple geometrical models we find that the recorded P- 

wave and S-wave fields have several spatial symmetries, which 
make them easy to interpret. As we increase the 3-D compli- 
cations, the recorded fields grow progressively more complicated 
and irregular as is clearly seen in both Figure 3 and 4 which dis- 

play snapshots in a plane normal to the z-axis at a depth of 1.7 
km. In general there will be P-waves, S-waves and surface waves 
travelling in the snapshot planes and in a number of directions 
through these planes. For this reason, it is essential to be able to 
record several snapshots normal to all three axis in a complicated 
3-D geometry to perform a satisfactory interpretation of the main 
events. In the first snapshot in Figure 3 we see the downgoing P- 
wave passing through the snapshot plane. The complexity of the 
model causes the deviations from a perfect circle for the downgo- 
ing P-wave. Consecutive snapshots show how the direct P-wave 
and reflected and converted P-waves evolves in time The inner 
circle on the last snapshot in Figure 3 is the first surface multiple 
propagating through the snapshot plane, interfering locally with 
other wave phenomena. The initial shear wave snapshot in Fig- 
ure 4 consists of energy which has propagated most of the way 
as P-waves before conversions to S-waves near the depth of the 
snapshot plane. At later times we see how several S-wave modes 
are excited or arrive at this depth and create complicated wave 
pat terns. 

For the shot-gathers and vertical seismic profiles we extract 
from the calculation the pressure field and the three components 
of particle velocities, v., va, and tt,. In Figure 5 we show a com- 
plete VSP recording from the numerical experiment performed in 
the model shown in Figure 2. The VSP recording is 1 km offset , 

from t.he source and marked with the thick solid line in Figure 2. 
It is interesting to note that the U, waves are transmitted through 
the elastic/acoustic interface at the top of the model and hence 

appear as continous over the interface, whereas upgoing v, and 
Q waves are more or less totally reflected at this interface. There 
are some small upgoing waves at the bottom of the VSP sections. 
This is due to the fact that we have not yet had the time to put 
any effort into the optimization of the the absorbing boundary 
conditions for our scheme. 

Timings 

This algorithm vectorizes easily and tests on a CRAY X-MP/28 
with an SSD have shown that the scheme is CPU bound. For a 
coarse grid model of size 128 x 128 x 128 meshpoints, the elapsed 
wall clock time for completing 1000 time-steps was 102 minutes. 
We were utilizing a single processor on the CRAY X-MP/28 in 
this case. We can reduce the time of computation with a fac- 
tor approaching 4 by multitasking the algorithm on a CRAY 
X-MP/48. 

For the model shown in Figure 2 the elapsed time is approxi- 
mately 8 hours utilizing a single processor on a CRAY X-MP/28. 

Conclusions 

The fast finite difference technique provides an accurate and effi- 
cient tool for modeling wave propagation in geologically complex 
media. 

Seismograms calculated for Lamb’s problem demonstrate ex- 
cellent accuracy for relatively coarse grids, ie. 3.0 gridpoints per 
shortest wavelength. If the grid is further coarsened towards the 
Nyquist limit we find some inaccuracies in reflection amplitudes 

due to the coarse sampling of the model. However, it appears 
that this problem is inherent to all discrete methods and is not 
related to our dlfferencing technique. 

At 3.0 gridpoints per shortest wavelength the fast finite dif- 
ference method is 6 times faster than the pseudospectral method 
and at least two orders of magnitude more efficient than second 
order finite difference schemes. 
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FIG. 1. Comparison of finite-difference and reflectivity methods. 
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FIG. 2. 3-D model for 
numerical experiment. 

FIG. 4. In-plane S-wave 
snapshots. 

FIG. 5. VSP recording. 
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